
Application of Multi Layer Monte Carlo in Solving Partial
Differential Equations for Bond Option Pricing

by

Eric Li

Supervisor: Professor Chi-Guhn Lee
April 2022

Application of Multi Layer Monte Carlo in Solving Partial Differential Equations for
Bond Option Pricing

Eric Li

Abstract

Presently, Partial Differential Equations (PDEs) are prevalent in modelling quantita-

tive financial derivatives. However, the Curse of Dimensionality (CoD) makes mod-

elling these PDEs in high dimensions difficult due to requiring more training data and

training time. Deep neural networks have shown to be effective in mitigating the CoD

in options pricing, but are limited by time inefficiencies with underlying Monte Carlo

(MC) path sampling for data generation and modelled PDE simplicity. The goal of

this thesis is to increase the time efficiency of path simulation and to increase the

complexity of PDE modelled with stochastic interest rates, which have not been done

in present literature. This is approached by applying a path sampling method previ-

ously only used for numerical PDE estimation- Multilevel Monte Carlo (MLMC)- in

place of MC in deep neural network data generation for option pricing with the Black

Scholes Barenblatt equation and modelling stochastic interest rates with zero coupon

bonds. Key results include MLMC requiring 1.4-1.6 and 5.1-7.2 times less training

time and time steps to reach various specified validation relative errors respectively.

No results for pricing zero coupon bonds with deep neural networks have been pro-

vided at this time. The results show initial promise for MLMC replacing previous MC

methods for increased time efficiency in deep neural network data generation, with

further investigation needed for experiments with modelling zero coupon bonds and

more complex PDEs in bond options and swaptions, and further improving MLMC’s

time efficiency through methods such as adaptive sampling.

ii

iii

Acknowledgments

I would like to express my sincere thanks to my supervisor Prof. Chi-Guhn Lee for

receiving me under his research group and advising through key components of this

thesis. I would also like to express my gratitude for Raj Patel and Amine Abous-

salah for framing this project, offering supporting background material, and providing

guidance over the course of this thesis.

iv

Contents

1 Introduction 1

2 Literature Review 3

2.1 Modelling PDEs and SDEs with Deep Learning 3

2.2 Time Efficiency . 6

2.3 Stochastic Interest Rates . 8

3 Methods 10

3.1 Comparing MLMC and MC . 10

3.2 Optimizing MLMC Hyperparameters 12

3.3 Stochastic Interest Rates: Bond Options 13

4 Results and Discussion 15

4.1 Comparing MLMC and MC Results 15

4.2 MLMC Hyperparameter Optimization 18

5 Conclusion 21

Bibliography 23

A Other MLMC and MC Comparisons 25

B MLMC Run Graphs 28

C MLMC Hyperparameter Exploration 30

v

List of Tables

A.1 The Seconds per Time Step Required by the Best Model of MLMC

and MC for Each Respective Relative Error 26

vi

List of Figures

2.1 MLMC path simulation for l = 1, 2, 3, M = 2, and T = 1 7

3.1 The prediction of the option price Yt and calculation of loss at each

time step t in one path realization . 11

4.1 The total time in seconds required for MLMC and MC to reach a

certain validation relative error on a log scale. 16

4.2 The total number of time steps required for MLMC and MC to reach

a certain validation relative error on a log scale. 17

4.3 The log normalized of the total number of time steps required for an

H Factor and Nl MLMC hyperparameter combination to reach 0.02

validation relative error. 18

A.1 The seconds per time step required for the best models of both MLMC

and MC at each respective validation relative error. 25

A.2 The factor of improvement for the total training time the best model of

MLMC displays over the best model of MC across varying validation

relative error tested. 26

A.3 The factor of improvement for the number of time steps the best model

of MLMC displays over the best model of MC across varying validation

relative error tested. 27

B.1 5 sample paths generated from the MLMC deep neural network pre-

dicting option prices between initial to terminal time compared to the

option prices obtained from the explicit solution with a validation rel-

ative error of 0.02. 28

B.2 The mean and two standard deviations of a MLMC deep neural net-

work across a batch of 100 validation sampling paths. The deep neural

network’s is trained when a validation relative error of 0.02 is reached. 29

vii

C.1 The log normalized total time steps required for MLMC with various

h values to reach respective validation relative errors. 30

C.2 The log normalized total time required for MLMC with various Nl

values to reach respective validation relative errors. 31

viii

ix

Chapter 1

Introduction

Within mathematics, Partial Differential Equations (PDEs) are regularly used to

describe real world phenomenons through modelling the relationship of underlying

variables and functions. Despite the prevalent usage of PDEs, the “Curse of Dimen-

sionality” (CoD) makes developing methods to represent and to solve such PDEs

difficult in high dimensions due to the increasing data sparsity- a consequence of

increasing the number of dimensions- and the resulting exponential growth of data

quantity needed to compensate such phenomena [4]. Given that there is a diverse

range of PDE types and classes, the CoD is prevalent in many applications, one of

which being quantitative finance where option pricing is modelled over time with high

dimensional PDEs.

Currently, deep learning has been shown to mitigate the CoD problem when mod-

elling high dimensional PDEs through various experiments in quantitative finance

despite no theoretical backing [5]. A common method to apply deep learning in mod-

elling PDEs is to reformulate the PDEs as a system of equivalent Backward Stochastic

Differential Equations (BSDEs) through using the Feynman-Kac Formalism and Ito’s

formula [8, 18]. Then, the equivalent BSDEs can be discretized into a sequence of time

steps using the Euler-Maruyama scheme [13], which is a commonly used method for

discretizing basic Stochastic Differential Equations (SDEs) [12]. After discretization,

Monte Carlo sampling methods are used for path simulation to generate training,

validation, and testing data representing underlying BSDEs.

Through this method, European option prices and other simplistic European finan-

cial derivatives have been modelled through deep learning application on the Black-

Scholes-Barenblatt (BSB) PDE equation in high dimensions [18, 8, 13, 5]. Despite

promising initial results shown for upwards to 100 dimensions [13], present methods

are largely limited from realistic application due to the time complexity associated

with iterative Monte Carlo sampling method application and the simplicity of the

1

2 CHAPTER 1. INTRODUCTION

underlying financial derivative PDE modelled. Consequentially, there are two objec-

tives of my thesis: to increase the time efficiency of path sampling for data generation

when applying deep neural networks to model high dimensional BSB PDEs and to

extend the complexity of the modelled financial derivative PDEs to include stochastic

interest rates, which better reflect real world applications.

Chapter 2

Literature Review

The purpose of this literature review is to perform a deeper dive into the current

common methods to reformulate PDEs into equivalent SDE expressions for deep neu-

ral network application. Experimental results from this formulation applied on PDEs

in quantitative finance will further be highlighted along with associated advantages

and disadvantages. Additional exploration will be performed on possible solutions for

the aforementioned observed disadvantages with a focus on decreasing path sampling

time complexity and increasing the complexity of the modelled PDE.

2.1 Modelling PDEs and SDEs with Deep Learning

The formulation of PDEs into SDEs and the subsequent modelling with deep neural

networks in this thesis is based on a paper by Raissi. The PDE formulation begins

with the general quasi-linear PDE:

ut = f(t, x, u,Du,D2u) (2.1)

with u(t, x) as the solution with terminal condition u(T, x) = g(x). Through the

application of Ito’s formula, which is used to calculate the differentials of stochastic

functions [15], u(t, x) and its derivative D(t, x) are related to a pair of stochastic

processes in a forward backward stochastic differential equation (FBSDE) system:

dXt = µ(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt)dWt, t ∈ [0, T],

X0 = ξ,

dYt = φ(t,Xt, Yt, Zt)dt+ Z ′
tσ(t,Xt, Yt)dWt, t ∈ [0, T),

Yt = g(XT)

(2.2)

3

4 CHAPTER 2. LITERATURE REVIEW

through setting

u(t,Xt) = Yt,

Du(t,Xt) = Zt.
(2.3)

To apply deep learning on the related PDE and FBSDE system, u(t, x) and

Du(t, x) are modelled with a deep learning neural network and automatic differ-

entiation on u(t, x) respectively. In this case, automatic differentiation is favored over

other manual, numerical, and symbolic differentiation methods due to its use of chain

rule in computing and propagating partial derivatives, which results in higher time

efficiency and accuracy in approximation [1].

To model u(t, x) and Du(t, x) with a neural network, the Euler-Maryuama scheme

is used to discretize FBSDE 2.2. An approximation for Xn and Y n at each time step

tn for n = 0, 1, ..., N − 1 is thus

Xn+1 ≈ Xn + µ(tn, Xn, Y n, Zn)∆tn + σ(tn, Xn, Y n)∆W n,

Y n+1 ≈ Y n + φ(tn, Xn, Y n, Zn)∆tn + (Zn)′σ(tn, Xn, Y n)∆W n
(2.4)

where ∆tn = T/N is the size of a single time step and ∆W n is the incremental change

of Brownian Motion driven by a normal distribution N (0,∆tn). The initial value of

X is set as X0 = ξ. The neural network’s loss function is given as

M∑
m=1

N∑
n=0

|Y n+1
m − Y n

m − φ(tn, Xn
m, Y

n
m, Z

n
m)∆tn − (Zn

m)
′σ(tn, Xn

m, Y
n
m)∆W n

m|2+

M∑
m=1

|Y N
m − g(XN

m)|2 (2.5)

where M is the batch size (number of stochastic path simulations in one iteration).

In 2.5, the former term with a summation over each M and N can be inferred as the

loss accumulated over time steps n = 0, 1, ..., N − 1, while the latter summation term

can be inferred as the estimation error between the approximated Y N
m and the actual

g(XM
m) stochastic process Y values at terminal time N .

This generalized method of formulating a PDE 2.1 into a system of FBSDEs 2.2

and modeling with a deep neural network with loss 2.5 is applied to quantitative

finance by using the BSB equation for European Option pricing. This is done by

setting ut in 2.1 as

ut = −1

2
Tr[σ2diag(X2

t)D
2u] + r(u− (Du)′x) (2.6)

with u(T, x) = g(x) as the terminal condition, Xt as the underlying stock price at

2.1. MODELLING PDES AND SDES WITH DEEP LEARNING 5

time t, and ut as the overlying option prices at time t. Through Ito’s formula, 2.6 is

related to the FBSDE system

dXt = σdiag(Xt)dWt, t ∈ [0, T],

X0 = ξ,

dYt = r(Yt, Z
′
tXt)dt+ σZ ′

tdiag(Xt)dWt, t ∈ [0, T),

Yt = g(XT)

(2.7)

where g(X) = ∥x2∥, Xt is the underlying stock price at time t, constants scalars T , σ,

and r represent the total time period, underlying volatility, and interest rate respec-

tively, and constant vector ξ represents the initial underlying stock price at t = 0.

MC path simulations can now be used to generate training, validation, and test data

through approximation of Yt, which are used during deep neural network training.

This approach by Raissi has several significant advantages over previous approaches,

namely the requirement of only one deep neural network and one complete training

cycle to model 2.1 and 2.2 at any given point in time. This is a significant advance-

ment in comparison to the approach proposed by Han et al., which only models a

subset of FBSDE cases from 2.2 and calls for the use of separate deep neural net-

works at each time step tn [8]. Only being able to predict terminal value Y0, Han et

al.’s approach also requires retraining to predict Yt values at intermediate time steps

0 < t < N [8]. Overall, Raissi approach reduces the number of parameters required to

train the deep neural network and enables the modelling of stochastic process values

at intermediate time steps.

Experimentally, Raissi’s approach has shown success in 100 dimensions when ap-

plied to European option pricing. With the explicit solution of 2.6 as

u(t, x) = exp((r + σ2)(T − t))g(x), (2.8)

the relative error of the predicted option price is compared to the explicit option price

at terminal time. By setting the total number of time steps between [0, T] as N = 50

and the batch size as M = 100, Raissi applies a 5 layer deep neural network with

256 neurons in each hidden layer to achieve a relative error of about 2.3× 10−3, after

approximately 500 steps of training [13]. This is in line with the results produced by

Han et al. [13, 8].

6 CHAPTER 2. LITERATURE REVIEW

2.2 Time Efficiency

While Raissi’s approach depicts initial promising results and advances upon a pre-

vious approach by Han et al. by reducing the number of training parameters, there

are several apparent limitations, one of which being the use of Monte Carlo (MC)

sampling for path simulations. With additional sampling and neural network itera-

tions required to obtain better Yt at intermediate time steps [13], Raissi’s approach is

limited by MC sampling’s slow convergence rate of O(N−1/2) [10], deceleration over

iterations [3], and sub optimal time complexity of O(ϵ−3) to achieve a user specified

root mean squared error of ϵ [7]. For small ϵ values, MC sampling becomes costly

and even small time efficiency improvements in sampling techniques can lead to sub-

stantial improvement across many iterations [3].

One sampling method improvement over MC sampling is Quasi-Monte Carlo (QMC)

path sampling, which exhibits more uniform path sampling distributions in compar-

ison to MC sampling. Due to this difference, QMC has a faster convergence rate of

O(N−1), which is the best possible convergence rate for equally weighted sampling

techniques [10]. Despite usage for numerical option pricing estimations, QMC has not

been largely applied in the application of data generation for training and validating

machine learning models in high dimensions.

Another more recent sampling method improvement over MC path sampling is

Multilevel Monte Carlo (MLMC) path sampling. Whereas MC and QMC use a fixed

number of discretized time steps between initial and terminal times, MLMC uses

various MC layers, which have varying number of discretized time steps, over the

total number of path iterations. At initialization, MLMC starts with a MC layer of

a hyperparameter M time steps. Then, MLMC computes the number of iterations

N1 to run at the current layer. Once N1 iterations have been run, MLMC proceeds

to increase the number of discretized time steps by a factor of M to achieve M2 time

steps. This process is repeated for a total of hyperperamater L layers. At general

layer l, an optimal number of time steps Nl is calculated by

Nl =

⌈
2ϵ−2

√
Vlhl(

L∑
l=0

√
Vl/hl)

⌉
(2.9)

where Vl is the variance at level l estimated with initial 104 samples, hl is the size of

each discretized time step calculated by hl = T/M , and L is the total number of MC

layers in the MLMC instance. Early termination at a given layer may also occur if

2.2. TIME EFFICIENCY 7

the convergence condition

|ŶL −M−1ŶL − 1| < 1√
2
(M2 − 1)ϵ (2.10)

is satisfied [7]. An illustration of the algorithm with M = 2 and T = 1 is shown in

2.1.

Figure 2.1: MLMC path simulation for l = 1, 2, 3, M = 2, and T = 1

Through the use of a variable number of time discretization at each layer, MLMC

has a time complexity of O(ϵ−2(logϵ)2) to achieve an user specified root squared mean

error of ϵ. This is an improvement over the O(ϵ−3) time complexity of MC to achieve

the same ϵ. This time improvement by MLMC is reflected through experiments,

which have shown a time decrease by a factor of 30-65 relative to MC when mod-

elling European, Asian, Digital, and Lookback option prices. Furthermore, MLMC’s

time factor improvement is greater for smaller ϵ values [7]. Despite these initial

promising results, MLMC is limited by low dimensions used during experimentation

and simplicity of the modelled financial derivatives in which the time improvements

are observed. MLMC also has not been applied for data generation in deep neu-

ral networks. Finally, MLMC’s additional time improvement opportunities through

combined usage with QMC and other sampling methods have not been observed.

In addition to the different sampling method improvements over the MC sam-

pling method, other SDE discretization methods can be used to improve upon the

Euler-Maruyama scheme. One such method is the Milstein discretization scheme,

which has been prevalent in discretizing SDEs describing financial derivatives. The

Milstein scheme is generally known to be more accurate in comparison to the Euler-

Maruyama scheme due to increased expansion of mean and standard deviation co-

efficients through Ito’s lemma [14]. Presently, the combination of path sampling

improvements, such as with QMC or MLMC, and time discretization improvements,

such as with the Milstein discretization scheme, has been unexplored and its potential

8 CHAPTER 2. LITERATURE REVIEW

speed and accuracy improvements are unclear.

2.3 Stochastic Interest Rates

To realistically model the development of a financial derivative over time, the stochas-

tic properties of short interest rates are considered. The Ho-Lee model is one of the

first models used to model short term interest rates with the SDE

drt = θ(t)dt+ σdWt, (2.11)

where σ is a constant, θ is some time dependent function, and Wt is Brownian motion

[17]. Though simple, a limitation of the model is the exclusion of the mean reversion

property, which is the property in which assets converge to an average price over time,

commonly seen with interest rates [11]. To address this limitation, the One-Factor

Hull White model builds on the Ho Lee model with

dr(t) = [θ(t)− ar(t)]dt+ σdWt, (2.12)

where Wt is Brownian motion, θ(t) is some deterministic function of time, and a and

σ are constants [2]. Modelling r(t) as a normal distribution N (θ
a
, σ

2

2a
) when t → ∞,

the One-Factor Hull White SDE sees r(t) approach the normal distribution faster

with larger a mean reversion values [2]. Despite an improvement upon the Ho Lee

model, this model is limited by the constant mean reversion factor a, which results in

a poor representation of yield curves. This limitation is addressed by the Two-Factor

Hull White model, which is often used to model short rate of interest development.

The Two-Factor Hull White model introduces an additional stochastic process u(t)

to 2.12 to obtain SDE

dr(t) = [θ(t) + u(t)− ar(t)]dt+ σ1(t)dW
1
t

du(t) = −bu(t) dt+ σ2(t)dW
2
t ,

(2.13)

where u(0) = 0, a, b, σ1, σ2 are positive constants and W 2
t and W 2

t are two separate

Brownian Motion processes with correlation ρ [2]. Currently, these developments of

modelling stochastic interest rates have not largely been applied in deep learning

approaches, which offer an area of exploration.

In Raissi’s approach, a constant interest rate is used in the deep neural network

model of the BSB equation. Due to the more accurate representation of financial

derivatives through stochastic interest rates and the lack of machine learning to pre-

dict stochastic interest rates in present literature, the incorporation of stochastic

2.3. STOCHASTIC INTEREST RATES 9

interest rate properties in 2.6 and 2.7 for modelling by a deep neural network is still

to be explored.

Chapter 3

Methods

To meet the two objectives of this thesis- to increase the path sampling time efficiency

when generating data for training a deep neural network in modelling high dimen-

sional BSB PDEs and to extend the complexity of modelled quantitative finance

PDEs to include stochastic interest rates- three separate methods are described in

this section. The first is the method associated with comparing MLMC and MC time

efficiency for neural network data generation. The second is the method for MLMC

hyper parameter optimization. The third is the method of representing stochastic

interest rates as a zero coupon bond and formulating the corresponding PDE into a

SDE for neural network modelling.

3.1 Comparing MLMC and MC

Given the first goal to increase the time efficiency of path sampling, the time efficiency

of MLMC is compared to that of MC. To run experiments with MLMC, MLMC is

“swapped” in place of MC. This means that both mathematical foundation and neural

network implementation is consistent between the two sampling methods.

In more descriptive terms, the same general PDE to SDE formulation via Ito’s and

subsequent SDE discretization for deep neural network training and data generation

as described in 2.1 is used. The same BSB PDE 2.6 and BSB SDE 2.7 are used to

represent the underlying option price as well. For the overarching deep neural network

model, both MLMC and MC path sampling methods generate data for a 6 layer fully

connected deep neural network with D+1 neurons in the input layer, where D is the

number of dimensions, 256 neurons in each of the 4 hidden layers, and 1 neuron in

the output layer. ReLU activation is used between each hidden layer. For training,

D = 10 dimensions and M = 100 batch size are used, chosen respectively due to the

high number of dimensions realistically applied in the quantitative finance industry

10

3.1. COMPARING MLMC AND MC 11

and usage in Raissi’s approach [13]. With each batch representing 100 separate path

realizations, N time steps are discretized between initial time t = 0 and terminal

time T = 1 based on MLMC or MC sampling policy for each path realization in each

iteration. At each intermediate time step t in path realization m, Xt is determined

fromXt−1+dXt as per 2.7, with Brownian motion dWt simulated by (
√
dt)N (0, 1) and

initial underlying stock price is set as X0 = (0, 1, 0, 1, ...) ∈ RD as done in [13]. Scalar

t and vector Xt are then concatenated to become a D + 1 vector and inputted into

the deep neural network model to obtain Y n+1
m , which can then be used to calculate

loss across all path time steps and path realizations with loss equation 2.5 and 2.7

and Zn+1
m with automatic differentiation. The loss is optimized through the Adam

optimizer with a learning rate of 0.001. This training process in one time step for one

given path realization is illustrated in 3.1.

Figure 3.1: The prediction of the option price Yt and calculation of loss at each time step t in one
path realization

Between MLMC and MC, the only difference is the number of discretized time steps

N . For MC, N is set as a constant user set hyperparameter maintained throughout

training. For MLMC, N is a variable which increases at a factor of h for each subse-

quent MLMC layer. Whereas [7] used 2.9 to calculate a varying number of samples at

each layer before layer progression, a constant Nl value is used instead and tuned as

an user set hyperparameter for simplification. Specifically, Nl training iterations are

ran before subsequent layer progression and number of time step increase by factor

h.

At each training iteration, validation relative error ϵ is found by comparing the

deep neural network predicted option price Ŷ to the actual option price Y at each

of a set 50 discretized time steps between initial and terminal times across 10 path

12 CHAPTER 3. METHODS

realizations. The validation relative error calculated by

ϵmn =
|Ŷ m

n − Y m
n |

Y m
n

(3.1)

at each time step. Path realization is then averaged, first across all path realizations

and then across all time steps to obtain one single validation relative error ϵ for

each training iteration. Training for both MLMC and MC deep neural networks

continue until ϵ reaches an user set validation relative error value as done to bench

mark MLMC’s numerical modelling performance to MC in [7]. To compare the two

sampling methods, total training time and the total number of time steps required

for the deep neural network model to reach ϵ are used. The total number of time

steps is calculated through taking a summation across all the discretized time steps

for all iterations. As an example, if the MLMC sampled deep neural network model

required 3 total training iterations and trained across 3 layers of MLMC with 2, 4, and

8 discretized time steps respectively, the total number of time steps is 2+ 4+8 = 14.

For MC, this summation of the total number of time steps simplifies to the product

between the total number of training iterations and the constant number of time steps

for each path realization. MLMC and MC neural network models with different path

sampling hyperparameters (Nl and h for MLMC and N for MC) are trained until

reaching various ϵ and the total time and total time steps are recorded. ϵ values are

chosen based on industry preference for model accuracies better than 5%.

3.2 Optimizing MLMC Hyperparameters

To optimize MLMC hyperparameters, the same formulation of MLMC and the deep

neural network as described in 3.1 is made. For hyperparameter exploration, two

MLMC hyperparameters are considered: the factor h in which subsequent MLMC

layers increase time steps and the number of training iterations run at each layer Nl.

To explore hyperparameters, a grid search of the combination of both hyperparame-

ters is performed, given the limited possible search space for both hyperparameters.

The search space for hyperparameter exploration in this thesis is guided by Gile’s h

hyperparameter exploration, which found an optimum value of h = 7 [7], and limited

by the performance capabilities of the device used for training.

3.3. STOCHASTIC INTEREST RATES: BOND OPTIONS 13

3.3 Stochastic Interest Rates: Bond Options

To formulate the modelling of stochastic interest rates with a deep neural network,

an approach similar to the relation of PDEs and SDEs and subsequent discretization

from [13] is used. There are slight differences with the previous method, starting with

the underlying asset being measured. Instead of the prediction of an option price at

a given point of time as derived from an underlying stock price, the price of a zero

coupon bond at a given time t, which is a derivative that pays a value of 1 at a

maturity time in the future T , is predicted. A zero coupon bond is chosen to model

stochastic interest rates due to its usage as a building block in interest rate derivative

theory.

The approach starts with the stochastic interest rate initially defined through the

Two-Factor Hull White model under risk neutral conditions:

drt = α(θt − rt)dt+ σdW 1
t ,

dθt = β(ϕ− θt)dt+ ηdW 2
t ,

(3.2)

where rt is short run interest rate at t, θt is long run interest rate at t, W 1
t and W 2

t

are two components of two-dimensional Brownian motion W = (W 1,W 2), and α, β,

σ, and η are positive constants. With the application of the Two-Factor Hull White

model, it is known that the price of a zero coupon bond at time t with a payoff of 1

at maturity T is given by the expected value:

Pt(T) = EQ[e−
∫ T
t rudu|Ft]. (3.3)

where Ft is the filtration of information available at t and r is short run interest rate.

Though 3.3 can be modelled with various numerical estimation methods, the methods

are largely inefficient. This inefficiency can be bypassed through relating it to a PDE

with the Feynman-Kac theorem, which allows the representation of the expectation of

a stochastic process as a PDE [6]. To set up the Feynman-Kac theorem application,

stochastic processes r and θ are combined to be a two dimensional stochastic process

X, where Xt = (rt, θt), such that

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt (3.4)

14 CHAPTER 3. METHODS

and µ and σ are two dimensional functions

µ(t, x, y) =

[
α(y − x)

β(ϕ− y)

]
σ(t, x, y) =

[
σ 0

0 η

]
, (3.5)

which include components from 3.2. After defining functions V (t, x, y) = x and

f(x, y) = 1 and a generator A required for the Feynman-Kac theorem, the theorem

can be applied and simplification can be performed to relate 3.3 to function u(t, rt, θt):

Pt(T) = u(t, rt, θt), (3.6)

where rt = x and θt = y. Here, u(t, rt, θt) (or equivalently u(t, x, y)) is a function

satisfying complex PDE:

∂u

∂t
+ α(y − x)

∂u

∂x
+ β(ϕ− y)

∂u

∂y
+

1

2
σ2∂

2u

∂x2
+

1

2
η2

∂2u

∂y2
= xu

u(T, x, y) = 1.

(3.7)

At this stage, the Euler-Maruyama scheme can be applied to discretize 3.4 and the

deep neural network can be set up to predict Pt(T) at given time t. The predicted

Pt(T) from the neural network can be compared with the known explicit solution to

3.7.

Results for deep neural network accuracy in predicting Pt(T) have not yet been

attained at the time of this report and is outlined in next steps under section 5.

Chapter 4

Results and Discussion

Results for this thesis is attained for comparing MLMC and MC in data generation

for deep neural network training outlined in 3.1 and for exploring MLMC hyperpa-

rameters when optimizing time taken to reach validation relative error ϵ outlined in

3.2. Results have not yet been attained for modelling complex PDEs via zero coupon

bonds as outlined in 3.3 and are left for next steps outlined in section 5.

4.1 Comparing MLMC and MC Results

To compare the time efficiency of MLMC and MC sampling methods for deep neural

network data generation, the total training time in seconds and the total time steps

required to reach a certain ϵ are measured. The results are in 4.1 and 4.2 respectively.

In both 4.1 and 4.2, each data point represents the average total time or total number

of time steps across 3 separate seed runs for various hyperparameter combinations.

For MC, the total number of discretized time steps N is varied. For MLMC, the

factor h in which the number of time steps in subsequent layers increases by and the

number of training iterations for each layer Nl are varied.

From 4.1 and 4.2, it is observed that MLMC reaches ϵ values with a smaller

amount of total run time and total time steps as compared to those required by MC

to reach the same ϵ value. Specifically, when comparing the best hyperparameter

combinations for both MLMC and MC such that the total run time and the number

of time steps are minimized, MLMC requires 1.4-1.6 times less training time and

5.1-7.2 times less total time steps when compared to MC across all ϵ values. The

combination of MLMC’s time step and total training time improvements over MC

can be seen in table A.1 and plotted in graph A.1, which display MLMC requiring

an average of 23.58 times less seconds per time step in comparison to MC at a given

validation relative error. These time improvements from MLMC compared to MC

15

16 CHAPTER 4. RESULTS AND DISCUSSION

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

To
ta

l R
un

 T
im

e
(L

og
 s)

Total Run Time Required to Achieve Relative Errors
MLMC
MC

Figure 4.1: The total time in seconds required for MLMC and MC to reach a certain validation
relative error on a log scale.

may be attributed to the low to high number of time steps discretized by MLMC

at increasing layers. By starting at a low number of time steps, MLMC allows the

deep neural network to first learn general features of the PDE solution. Then after

progressive iterations, the deep neural network learns progressively more specific and

complex features through more time steps. This is analogous to contemporary deep

learning methods which aim to learn feature hierarchies, with lower general features

learning used to support higher and more specific feature learning [9].

Further insight on MLMC’s performance in comparison to that of MC can be

drawn from A.2 and A.3, which respectively plot MLMC’s factor of improvement for

total training time and total time steps over MC across validation relative errors.

From A.3, it is observed that the improvement for the total number of time steps

generally increases as validation relative error decreases, with a significant drop for

when validation relative error is 0.015. Despite this trend, A.2 does not display a

similar pattern for the total training time improvement of MLMC over MC as relative

error decreases. The source of these inconsistency of results between time step and

4.1. COMPARING MLMC AND MC RESULTS 17

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error

5

6

7

8

9

10
To

ta
l N

um
be

r o
f T

im
es

te
ps

 L
og

Total Number of Timesteps Required to Achieve Relative Errors
MLMC
MC

Figure 4.2: The total number of time steps required for MLMC and MC to reach a certain validation
relative error on a log scale.

overall time improvement is currently unclear and require more seed runs to clarify

possible trends.

In 4.1 and 4.2, it is also observed that the spread of MLMC’s points increase slower

in comparison to the spread of MC’s points as relative error decreases. This indicates

that hyperparameter selection and optimization is more important for MC than it is

for MLMC as different hyperparamter combinations seem to vary MC’s performance

much more in comparison to that of MLMC.

From these aforementioned figures, it is initially concluded that MLMC path sam-

pling exhibits a significant time improvement over MC path sampling for deep neural

network data generation. While these are promising results, there are several limita-

tions to the overall analysis. The first limitation is the limited number of seed runs.

Given that only 3 seeds runs are selected for each MLMC and MC model and corre-

sponding data point on 4.1 and 4.2, both abnormally high or low performing seeds can

substantially skew results. This can be mitigated through performing and averaging

the data across more seed runs. Another limitation is the implementation of both MC

18 CHAPTER 4. RESULTS AND DISCUSSION

and MLMC path sampling methods. In this current comparison, the most simplistic

form of MC is implemented without consideration for possible performance boosting

methods, such as Richardson extrapolation as seen in [7]. MLMC’s implementation is

also simplified for the purpose of this thesis. A fixed number of training iterations per

layer Nl is used in place of a variable Nl calculated on the fly as seen in [7]. Further

performance boosting methods with MLMC is also left unexplored. This indicates

that the benefits of MLMC over MC may vary in realistic applications where either

sampling method is optimized for its use case. A third limitation is the simplicity of

the PDE modelled. Despite MLMC being likely to perform better than MC in set-

tings involving more complex PDEs considering the substantial performance increase

for simplistic PDEs, experiments are still to be performed to show that this is the

case.

4.2 MLMC Hyperparameter Optimization

To explore MLMC hyperparameters, a grid search is applied for the following combi-

nations of h = 2, 3, 4, 5, 6, 7, 8, 9, 10 and Nl = 50, 100, 150, 200, 250. The log normal-

ized time steps required to reach a validation relative error of 0.02 is seen in heatmap

4.3. Time steps for h = 7, 8, 9, 10 and Nl = 50 are not measured due to very large run

times. In 4.3, it is seen that the total number of time steps increases as h increases,

2 3 4 5 6 7 8 9 10
H Factor (h)

25
0

20
0

15
0

10
0

50Nu
m

be
r o

f T
ra

in
in

g
Ite

ra
tio

ns
 p

er
 L

ay
er

 (N
l) 4.9 5.3 5.6 5.8 6.1 6.2 6.4 6.3 6.6

4.9 5.3 5.6 5.8 6 6.2 6.3 6.5 6.7

4.9 5.3 5.6 5.8 6.1 6.2 6.4 6.3 6.6

4.9 5.3 5.6 5.8 6.1 6.2 6.4 6.3 6.6

5.1 5.9 6.6 7.1 8.2

Normalized Timesteps for MLMC Model to Reach Relative Error 0.02

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Figure 4.3: The log normalized of the total number of time steps required for an H Factor and Nl

MLMC hyperparameter combination to reach 0.02 validation relative error.

4.2. MLMC HYPERPARAMETER OPTIMIZATION 19

but seem largely independent to changes in Nl. Despite [7] citing fastest numeri-

cal convergence of MLMC modelling a PDE when h = 7, the increase of required

time steps with the increase in h is plausible given the differing use cases of MLMC.

Whereas [7] uses MLMC for numerical modelling of PDEs, this project uses MLMC

for training deep neural networks, which are then modelling underlying PDEs. As a

result, larger h values may result in larger rates of time step accumulation, preventing

the neural network from capturing more general PDE features during a smaller num-

ber of discretized time steps before moving on to capture more specific features during

a larger number of discretized time steps. This may result in time steps increasing

at a faster rate without yielding a faster reduction in validation relative error. The

result for Nl is unexpected and may be attributed to the deviation of MLMC’s imple-

mentation in this thesis when compared to the implementation by Giles in [7]. Given

that [7] calculates a variable Nl for each layer, a fixed Nl for all MLMC layers as

implemented here may possibly average out the optimal and sub optimal Nl values in

various layers, thus obtaining an average that performs moderately across all layers.

These trends for h and Nl are also exhibited through varying validation relative errors

in C.1 and C.2. As validation relative error decreases, the total number of time steps

required increases non linearly: the increase in the number of time steps required to

improve validation relative error from 0.015 to 0.01 is far more than that required

to improve validation relative error from 0.05 to 0.02. This is generally expected,

since progressively more training iterations is required by the neural network to reach

smaller validation relative errors, which results in more data and time steps needed

to be generated.

When observing one singular training and validation run for a MLMC deep neu-

ral network, B.1 and B.2 are plotted for the MLMC model with the optimal set of

hyperparamters found h = 2 and Nl = 200. Training is terminated when validation

relative error is 0.02. In B.1, it is observed that the learned option price generally

follows the exact option price with some deviations when sudden movements from

the exact option price occur. This points towards a weakness of the deep neural net-

work model and path sampling policy of being vulnerable against sudden changes in

the underlying stochastic process. In B.2, both the mean and standard deviation of

the relative error across a validation batch is seen to increase as time steps progress

towards terminal time. This indicates that while the current uniform sampling policy

demonstrated by MLMC (and MC) may be effective for generally training the deep

neural network across all time steps, more training iterations will need to be done on

specific segements of time for the deep neural network to reliably predict all time steps

offered. These validation relative error paths differ from the MC results obtained by

20 CHAPTER 4. RESULTS AND DISCUSSION

[13], which demonstrated MC’s convergence at initial and terminal time. However,

deviations in training approaches warrant these differences. While [13] terminated

training when a certain number of iterations are met, the approach outlined in this

thesis terminated training when a certain validation relative error is met. Further-

more, the threshold validation relative errors set in this paper, which are based on

the accuracy expectations of option pricing models in industry, are far greater than

the validation relative errors achieved in [13], which leaves room for more error and

path deviations seen in this thesis.

Overall, it is concluded that an optimal hyperparameter set for MLMC include a

small h value, the best being h = 2 in these experiments. On the other hand, MLMC

performance does not seem to very by Nl. There are several limitations to these

results. The first limitation is similar to that mentioned in 4.1: the small number

of seed runs (3) for each hyperparameter combination allows for very effective or

poor training runs to largely skew the averaged result for each result. This can be

mitigated with more seed runs (ie: 10). Another limitation is the deviation from

the MLMC model in [7], which uses variable Nl compared to the fixed Nl iterations

at each MLMC layer for each hyperparameter combination. This may effect overall

results for h, since the fixed Nl run with each h may have been more optimal for some

h compared to others. Note that if a calculated Nl is to be implemented, the MLMC

model will only have h as a hyperparameter. A third limitation is the simplicity of the

MLMC model used in this approach; no performance boosting methods are used for

this thesis, which may have offered more diverging results for hyperparameter tuning.

This can be mitigated and explored through implementing performance boosting

methods such as adaptive sampling, which samples and trains more iterations at high

loss time steps [16].

Chapter 5

Conclusion

With PDEs’ prevalent use in quantitative finance, deep neural networks have been

shown to be a promising solution in mitigating the CoD. Due to the slow time com-

plexity of current MC methods to generate deep neural network training data and the

simplicity of PDEs modelled, the goals of this thesis are to increase time efficiency of

path sampling and to apply deep neural networks to more complex PDEs involving

stochastic interest rates. Accomplishment of these goals reveals more of the potential

deep neural networks have in realistic quantitative finance applications. To address

the former goal of reducing path sampling time complexity, MLMC based on [7] is

substituted as the path sampling method in place of MC following a formulation in

[13]. To compare the performance of MLMC and MC, total training time and total

number of time steps required to reach various validation relative errors are measured.

To address the latter goal of modelling more complex PDEs involving stochastic inter-

est rates with deep neural networks, a formulation resembling the approach in [13] is

performed. By introducing the Two-Factor Hull White model and the known payoff

of zero coupon bonds, a SDE is modelled and related to an accompanying PDE with

the Feynman-Kac theorem, to which discretization by the Euler-Marayama schema

can then be applied for deep neural network formulation.

The results of this thesis met the former goal for time complexity reduction with

MLMC requiring 1.4-1.6 less training time and 5.1-7.2 less total time steps as com-

pared to MC across all validation relative error values. This shows that MLMC is a

promising replacement for MC in speeding up the deep neural network data genera-

tion, which allows neural networks to more effectively and efficiently address the CoD

when modelling PDEs. For the second goal, results for the combined MLMC and deep

neural network model currently are not available for more complex PDEs involving

stochastic interest rates as experiments are still be to run. While these initial results

of applying MLMC to deep neural networks are promising, the several limitations of

21

22 CHAPTER 5. CONCLUSION

the limited number of seed runs (3), the simplification of MLMC from [7] with fixed

Nl, and the lack of other performance boosting methods run for both MLMC and MC

warrants further exploration into the effectiveness. Next steps of this thesis include

first and foremost the experiments of stochastic interest rates with zero coupon bonds

to be run as outlined in 3.3. Increasingly complex PDEs involving stochastic interest

rates implemented through bond options and swaptions can then be explored to ex-

amine the combined MLMC and deep neural network model’s capabilities for solving

more complex PDEs. To mitigate the aforementioned limitations, next steps also

involve more seed runs to reveal more reliable MLMC-MC comparisons and hyper-

parameter trends, MLMC implementation using variable Nl to allow benchmarking

of MLMC with performance in literature, and other performance boosting methods,

such as adaptive sampling, in which additional paths and training are completed for

highly evaluated loss time steps [16]. These next steps comprehensively reveal more

and more about MLMC’s potential in being used in conjunction with deep neural

networks to model PDEs and to mitigate the CoD.

Bibliography

[1] Atilim Gunes Baydin et al. Automatic differentiation in machine learning: a survey. 2018.

arXiv: 1502.05767 [cs.SC].

[2] Arnaud Blanchard. The Two-Factor Hull-White Model : Pricing and Calibration of Interest

Rates Derivatives. Accessed: 2022-01-21. 2012. url: https://www.math.kth.se/matstat/

seminarier/reports/M-exjobb12/120220b.pdf.

[3] Russel E. Caflisch. “Monte Carlo and quasi-Monte Carlo methods”. In: Acta Numerica 7

(1998), pp. 1–49. doi: 10.1017/S0962492900002804.

[4] Curse of Dimensionality. https://deepai.org/machine-learning-glossary-and-terms/

curse-of-dimensionality. Accessed: 2022-03-14.

[5] Weinan E, Jiequn Han, and Arnulf Jentzen. “Deep Learning-Based Numerical Methods for

High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic Differen-

tial Equations”. In: Communications in Mathematics and Statistics 5.4 (Nov. 2017), pp. 349–

380. issn: 2194-671X. doi: 10.1007/s40304-017-0117-6. url: http://dx.doi.org/10.

1007/s40304-017-0117-6.

[6] Forrest Flesher. Stochastic Processes and the Feynman-Kac Theorem. url: https://scholar.

harvard.edu/files/forrestgflesher/files/final_paper_final.pdf.

[7] Michael B. Giles. “Multilevel Monte Carlo Path Simulation”. In: Operations Research 56.3

(2008), pp. 607–617. doi: 10.1287/opre.1070.0496. eprint: https://doi.org/10.1287/

opre.1070.0496. url: https://doi.org/10.1287/opre.1070.0496.

[8] Jiequn Han, Arnulf Jentzen, and Weinan E. “Solving high-dimensional partial differential

equations using deep learning”. In: Proceedings of the National Academy of Sciences 115.34

(2018), pp. 8505–8510. issn: 0027-8424. doi: 10.1073/pnas.1718942115. eprint: https:

//www.pnas.org/content/115/34/8505.full.pdf. url: https://www.pnas.org/content/

115/34/8505.

[9] S. Jothilakshmi and V.N. Gudivada. “Chapter 10 - Large Scale Data Enabled Evolution of

Spoken Language Research and Applications”. In: Cognitive Computing: Theory and Appli-

cations. Ed. by Venkat N. Gudivada et al. Vol. 35. Handbook of Statistics. Elsevier, 2016,

pp. 301–340. doi: https : / / doi . org / 10 . 1016 / bs . host . 2016 . 07 . 005. url: https :

//www.sciencedirect.com/science/article/pii/S0169716116300463.

[10] Frances Y. Kuo and Ian H. Sloan. “Lifting the Curse of Dimensionality”. In: 2005.

[11] Mean reversion. https://www.nasdaq.com/glossary/m/mean-reversion. Accessed: 2022-

01-21. 2018.

23

https://arxiv.org/abs/1502.05767
https://www.math.kth.se/matstat/seminarier/reports/M-exjobb12/120220b.pdf
https://www.math.kth.se/matstat/seminarier/reports/M-exjobb12/120220b.pdf
https://doi.org/10.1017/S0962492900002804
https://deepai.org/machine-learning-glossary-and-terms/curse-of-dimensionality
https://deepai.org/machine-learning-glossary-and-terms/curse-of-dimensionality
https://doi.org/10.1007/s40304-017-0117-6
http://dx.doi.org/10.1007/s40304-017-0117-6
http://dx.doi.org/10.1007/s40304-017-0117-6
https://scholar.harvard.edu/files/forrestgflesher/files/final_paper_final.pdf
https://scholar.harvard.edu/files/forrestgflesher/files/final_paper_final.pdf
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1073/pnas.1718942115
https://www.pnas.org/content/115/34/8505.full.pdf
https://www.pnas.org/content/115/34/8505.full.pdf
https://www.pnas.org/content/115/34/8505
https://www.pnas.org/content/115/34/8505
https://doi.org/https://doi.org/10.1016/bs.host.2016.07.005
https://www.sciencedirect.com/science/article/pii/S0169716116300463
https://www.sciencedirect.com/science/article/pii/S0169716116300463
https://www.nasdaq.com/glossary/m/mean-reversion

24 BIBLIOGRAPHY

[12] Jan Palczewski. Numerical schemes for SDEs. https://www.mimuw.edu.pl/~apalczew/CFP_

lecture5.pdf. 2021.

[13] Maziar Raissi. Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional

Partial Differential Equations. 2018. arXiv: 1804.07010 [stat.ML].

[14] Fabrice Douglas Rouah. Euler and Milstein Discretization. Accessed: 2022-01-12.

[15] Mike Stecher. Brownian Motion and Stochastic Differential Equations. 2012.

[16] Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS: A deep adaptive sampling method for

solving partial differential equations. 2021. doi: 10.48550/ARXIV.2112.14038. url: https:

//arxiv.org/abs/2112.14038.

[17] Pietro Veronesi. Fixed income securities: Valuation, risk, and risk management. J. Wiley amp;

Sons, Inc., 2011.

[18] Wenzhong Zhang andWei Cai. FBSDE based Neural Network Algorithms for High-Dimensional

Quasilinear Parabolic PDEs. 2021. arXiv: 2012.07924 [math.NA].

https://www.mimuw.edu.pl/~apalczew/CFP_lecture5.pdf
https://www.mimuw.edu.pl/~apalczew/CFP_lecture5.pdf
https://arxiv.org/abs/1804.07010
https://doi.org/10.48550/ARXIV.2112.14038
https://arxiv.org/abs/2112.14038
https://arxiv.org/abs/2112.14038
https://arxiv.org/abs/2012.07924

Appendix A

Other MLMC and MC

Comparisons

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Se
co

nd
s p

er
 ti

m
e

st
ep

Seconds per time step for MLMC and MC at Various Validation Relative Errors

MLMC
MC

Figure A.1: The seconds per time step required for the best models of both MLMC and MC at each
respective validation relative error.

25

26 APPENDIX A. OTHER MLMC AND MC COMPARISONS

Table A.1: The Seconds per Time Step Required by the Best Model of MLMC and MC for Each
Respective Relative Error

Validation Relative Error MLMC(s) MC(s) MC/MLMC
0.015 0.068922 1.75491 25.46226169
0.02 0.068647 1.635333 23.82235203
0.025 0.069117 1.691431 24.47199676
0.03 0.070092 1.628132 23.22849969
0.035 0.0782062 1.68228 21.51082651
0.04 0.070955 1.630835 22.98407441
0.045 0.0712 1.668044 23.42758427
0.05 0.069992 1.660436 23.72322551

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

M
LM

C
Ti

m
e

Fa
ct

or
 Im

pr
ov

em
en

t O
ve

r M
C

MLMC Time Factor of Improvement Over MC for Various Relative Errors

Figure A.2: The factor of improvement for the total training time the best model of MLMC displays
over the best model of MC across varying validation relative error tested.

27

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

M
LM

C
Ti

m
e

St
ep

 Fa
ct

or
 Im

pr
ov

em
en

t O
ve

r M
C

MLMC Time Step Factor of Improvement Over MC for Various Relative Errors

Figure A.3: The factor of improvement for the number of time steps the best model of MLMC
displays over the best model of MC across varying validation relative error tested.

Appendix B

MLMC Run Graphs

0.0 0.2 0.4 0.6 0.8 1.0
t

4

5

6

7

8

9

Y t
=

u(
t,

X t
)

10-dimensional Black-Scholes-Barenblatt Paths
Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure B.1: 5 sample paths generated from the MLMC deep neural network predicting option prices
between initial to terminal time compared to the option prices obtained from the explicit solution
with a validation relative error of 0.02.

28

29

0.0 0.2 0.4 0.6 0.8 1.0
t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
la

tiv
e

Er
ro

r

10-dimensional Black-Scholes-Barenblatt
mean
mean + two standard deviations

Figure B.2: The mean and two standard deviations of a MLMC deep neural network across a batch
of 100 validation sampling paths. The deep neural network’s is trained when a validation relative
error of 0.02 is reached.

Appendix C

MLMC Hyperparameter

Exploration

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Relative Error

10
9

8
7

6
5

4
3

2
H

Fa
ct

or

9.8 6.7 6.7 6.6 6.6 6.5 6.5 6.4 6.1

8.9 6.5 6.5 6.4 6.4 6.2 6.2 6.2 6.1

7.4 6.5 6.3 6.2 6.2 6.2 6.1 6.1 6

8.7 6.3 6.2 6.1 6 6 5.9 5.9 5.8

7.7 6.1 6 5.9 5.8 5.7 5.7 5.7 5.6

8.4 6 5.8 5.8 5.8 5.6 5.6 5.6 5.5

8.3 5.8 5.6 5.5 5.4 5.3 5.3 5.2 5.2

8 5.4 5.3 5.3 5.1 5.1 5.1 5.1 5

8.2 5.3 4.9 4.8 4.7 4.7 4.7 4.7 4.6

Log Timesteps for Varying H-Factor MLMC Models to Reach Relative Errors

5

6

7

8

9

Figure C.1: The log normalized total time steps required for MLMC with various h values to reach
respective validation relative errors.

30

31

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Relative Error

25
0

20
0

15
0

10
0

50
Nl

8.8 4.9 4.9 4.7 4.6 4.6 4.6 4.6 4.5

8.4 5.2 4.9 4.8 4.7 4.7 4.6 4.6 4.5

8.2 4.9 4.9 4.7 4.6 4.6 4.6 4.6 4.5

8 4.9 4.9 4.7 4.6 4.6 4.6 4.6 4.5

8.5 5.3 5.1 4.7 4.6 4.6 4.6 4.6 4.5

Log Timesteps for Varying Nl MLMC Models to Reach Relative Errors

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Figure C.2: The log normalized total time required for MLMC with various Nl values to reach
respective validation relative errors.

	Introduction
	Literature Review
	Modelling PDEs and SDEs with Deep Learning
	Time Efficiency
	Stochastic Interest Rates

	Methods
	Comparing MLMC and MC
	Optimizing MLMC Hyperparameters
	Stochastic Interest Rates: Bond Options

	Results and Discussion
	Comparing MLMC and MC Results
	MLMC Hyperparameter Optimization

	Conclusion
	Bibliography
	Other MLMC and MC Comparisons
	MLMC Run Graphs
	MLMC Hyperparameter Exploration

