UNIVERSITY OF

5 TORONTO ~ Engineering

Application of Multi Layer Monte Carlo in Solving Partial
Differential Equations for Bond Options Pricing

April 2022

Eric Li
Engineering Science (Machine Intelligence)

University of Toronto

Table of Contents

 Motivation

— Curse of Dimensionality, Time Efficiency, and PDE Simplicity
« Background

— FBSNN for High Dimensional PDEs

— Multilayer Monte Carlo Path Simulation
e Methods and Results

— Comparing MLMC to MC methods

— MLMC Hyperparameter tuning

— Performance Benchmarking (can remove this)
* Conclusion

— Key Findings

— Next Steps

(] UNIVERSITY OF

% TORONTO ENngineering

Introduction

* Motivation
e Curse of Dimensionality

Motivation: Curse of Dimensionality (CoD)

Partial Differential Equations (PDESs): Black Scholes Barenblatt (BSB)

v 1, ,0V 9V
4 20— S — 1V =0
ot 2 oS 0S
a) 1D - 4 regions 2 b) 2D - 16 regeons c) 3D - 64 regons
- o
® o
! ®..& ° o ®
° o -0 19
L o
2 o ®
- - -) . ‘ .o
Curse of Dimensionality: More data o . .
required due to greater sparsity at : o 9 i
larger dimensions ¢ @ oo mosom ms ¢ e
0 5 10 15 20 0 3 0 15 x R T
DeepAl, Data Sparsity for Data Points. .

% TORONTO [ENngineering

Motivation: Time Efficiency and PDE Simplicity

Deep Neural Network: Solution for BSB CoD

r—Py u(ty, Xr,v)

Limitation: Time Inefficiency
from Monte Carlo Sampling

_

Fixed Interest Rate Goal:

Limitation: Model Simplicity 1) Increase Path Simulation Time
v 1 0%V V Efficiency
— 252 +rS— —rV =0 2) Extend PDE Complexity for more

ot 2 0.5? 0S5 realistic real world application

Weinan E, Jiequn Han, and Arnulf Jentzen. “Deep Learning-Based

@E& Numerical Methods for High-Dimensional Parabolic Partial Differential
@ UNIVERSITY OF = = Equations and Backward Stochastic Differential Equations”. In:
2 TORONTO Englneerlng Communications in Mathematics and Statistics 5.4 (Nov. 2017), pp.

= 349-380. issn: 2194-671X.doi:10.1007/s40304- 017- 0117- 6 .url:
http://dx.doi.org/10.1007/s40304-017-0117-6

Background

* Forward Backward Stochastic Neural Networks (FBSNN) for High Dimensional PDEs
* Multilayer Monte Carlo (MLMC) Path Simulation

F BS N N : I n itia I FO rm u Iatio n S Initial Coupled Forward Backward Stochastic Differential

Equations (FBSDE) of general form:
dXt = ,U/(t,Xt,}/t,Zt)dt—i—U(t,Xt,n)th, te [O,T],

Quasi-linear PDEs
9 XO — 57
u = f(t,z,u, Du, D*u) dY, = o(t, X4, Yy, Zo)dt + Zlo(t, Xy, Y)dW,, t€[0,T),
YT — g(XT)a

Unknown solution: u(t,)

Terminal Condition: u(T, z) = g(z) Solutions consist of stochastic processes X, Y, Z_

[to’s Formula

Y; = u(t, X;), and Z; = Du(t, Xy).

Physics Informed Deep Learning Automatic Differentiation

J

Approximate with a DNN u(t, z)

% Maziar Raissi. Forward-Backward Stochastic Neural
Networks: Deep Learning of High-dimensional
Partial Differential Equations. 2018.

 TORONTO Englnee"ng arXiv:1804.07010 [stat.ML] .

FBSNN: Modelling with DNN

Goal: Approximate u(x,t) with DNN

1. Discretize FBSDE with Euler-Maruyama scheme
X"l X+ u(t™, X™, Y™, ZVAL + o (1", X™, Y AW™,
Yn-}-l ~Y™"n 4+ QO(tn, X'n,, Y'n,’ Zn)Atn + (Zn),O'(tn, X'n,, Yn)AWn,

2. Define Loss Function

M N-1
n+1 n n n n n |2 N
d Y |yt -y - on At — (20, EAW|+§:|Y Y2
m=1 n=0
N = Number of Timesteps M = Number of Path Simulations
2 aversiny or .
% TORONTO = Engineering

100-dimensional Black-Scholes-Barenblatt

FBSNN: Financial Applications -
FBSD N
dX, = odiag(X,)dW,, te[0,T], 7
XO = 5’ i 70 D
dY; = 7"(Yt — Z;X)dt + qZ{diag(Xt)th, t € [07 T)7 |~ Toarnea utz,)
Yr=9(Xr), g(z) = ||z|* 0] e Trourin
W Yo =u(0,Xo)
Black Scholes Barenblatt (BSB) PDE 0 02 o i i o0
1 _ t
Uy = _irI‘r[Uzdla’g(th)D 2’1,1,] a3 T'(’LL - (D u)’x) 100-dimensional Black-Scholes-Barenblatt
Known Explicit Solution 0007 1
u(t,z) = exp ((r + o*)(T —t)) g(z) ZZ:G
* X :Underlying Stock price at time t :Zz; /
* Y, :Overlying derivative price at time t - '
* 0:Scalar Volatility =N,
* r: Scalar Interest Rate R 02 04 06 0 o

t

* Monte Carlo Path Sampling for data generation

UNIVERSITY OF

% TORONTO Engineering

FBSNN: Advancements and Limitations

Advancements

* Model parameters do not increase by number of timesteps (N)
* Converges to the exact value Y, = u(0,X) in first few hundred iterations
« After 500 iterations, relative error of 2.3 x 103 is obtained

Limitations

* Monte Carlo sampling is costly
* More time steps required to more accurately estimate Y, = u(t,X) for t >0

Only basic PDEs modelled; BSB equations for calls and puts are more complex
Only quasi-linear parabolic PDEs can be modelled and solved

UNIVERSITY OF

5 TORONTO = ENgineering

MLMC: An Extension of Previous MC Method

- Previous MC method repeatedly iterates over a constant amount of points in

time interval [0, T]

- MLMC introduces layers of different time steps covering different iterations

0<t<T 0O<lI<lL h=m'T T: Terminal Time
L: Terminal Layer
M=2T=1 t, =05 h: time step size at layer |
I=1 | | N M: number of time step increase per
hl=0'5 1 |ayer
t =0.25 t =0.75 €: relative error
[=2 1 3
| | | | N,
h =0.25 05
Iterations at each level 2
i
N, = {25‘2 \/ Vi (Z\/Vl/hl)} I=3 | | | | | | | | N,
=0 h=0.125

Convergence Condition Y, - MY | <2 (M*-1)e

S

UNIVERSITY OF

% TORONTO [ENngineering

MLMC: Initial Paper Results

Theory

 To achieve an accuracy of O(€) in sampling , the computation cost is reduced from O(£3) of MC to
O(£?(log€)?) of MLMC

Application on Option Pricing

* Time decrease of a factor in the range of 30-65 in comparison with MC or 4-10 in comparison to MC
+ performance boosting methods (ie: Richardson extrapolation)

Limitations

* Lack of complex finance applications (ie: high dimensionality) during testing

* Lack of significant improvement when combined with Richardson Extrapolation; other performance
boosting methods (ie: Quasi Monte Carlo, Milstein Discretization) must be explored

* Unknown benefits when used for neural network data generation

* Potential problems arising due to bias from Monte Carlo path simulation is still present

(] UNIVERSITY OF

% TORONTO ENngineering

Methods and Results

* Comparing MLMC and MC
* Exploring MLMC Hyperparameters
* Bond Options (Stochastic Interest Rates)

Methods: Comparing MLMC and MC (Training)

Performed across all M batches over N timesteps for each training iteration

For Each Timestep t Input Layer 4 Hidden Layers Output Layer
dt))))))
t

t - t, 1

—

)

Automatic
Differentiation
dX. —— | D+1 |——| 256 ——| 256 256 256 —»@ Y, Z,

X 1 - X, D

— — — — — — |

Relu Relu Relu
Wt-1 tt’ Xt
Y, Vo — Yoy — Ot — (R YTOAWR* Loss,
W Y. ., Z

t-1 t-17 " t-17 Tt-1 _
Loss Function

Engineering

Methods: Comparing MLMC and MC (Validation)

For Each Iteration Until e=User Specified Error Overlying
Underlying Option Price
A Pri
sset Price 50 Timesteps
4)
t
Neural M
Network Ypredicted \
- /
€
M
X
Explicit Solution /
u(t, @) = exp ((r + 0*)(T — 1)) g(=) Ve
_ D
50 Timesteps

Relative Error = € = |Yactual_ Ypredicted| / Yactual

@

UNIVERSITY OF

% TorRONTO ENgineering

Results: Comparing MLMC and MC

Total Number of Timesteps Required to Achieve Relative Errors Total Run Time Required to Achieve Relative Errors
: ® MLMC ® ® MLMC
454{ @ MC
01 ® ® MC ©
= ° : 4.0 *
0 ©
3 g ® s ! 0 3 _ ° ®
8 o ‘ n o ‘
9 $ ° 2351 @
) [) . o o ‘
0 ® ® 8 o =
E 8+ ® ® ® 0 0 5 ° Py ° e
= - o o o £ 3.0 1 o s . o 0
% ® F °] 2
& ° i 1 o . S ® = e o d : ° ¢
2 71 ® o 2541 o L o P []
g L [] 2] © ® o] o
= S i ¢ $ o ® ® ° e ° °
S 64 @ s g s g o o 2.0 e ® ® ° o
2 ° ® o o 5 5 H ® ' ® © ® °
o o : 8 e 9 o 3 ®
3 ° e p s S o ° 1.5 1 '
> e @ - '
® o ® o ® e
T T T T T T T T 1.0 i 1 1 1 T 1 1 1 T
0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Validation Relative Error Validation Relative Error
Figure 1 Figure 2
Best MC model requires 5.1-7.2x more timesteps than Best MC model requires 1.4-1.6x more time than the
best MLMC model best MLMC model

UNIVERSITY OF

% TORONTO [ENngineering

H Factor

°
Results: MLMC at Different Hyperparameters
: Y
Log Timesteps for Varying H-Factor MLMC Models to Reach Relative Errors Normalized Timesteps for MLMC Model to Reach Relative Error 0.02
3K

-8.0

250

200

100

|

Number of Training Iterations per Layer (NI)
150

50

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Relative Error H Factor
Figure 3 Figure 4
N, =200 Relative Error = 0.02
Time steps increase as Relative Error decreases and H Time steps increase as H Factor increases, but seem
Factor increases independent of NI

] UNIVERSITY OF

¥ TORONTO ENgineering

Methods: Bond Pricing (Stochastic Interest Rates)

Equation (1) Equation (2)
{ dri = a(f; —ry)dt + o thl, P(T) = EQ [e‘ Ji T d“PT(T)'}'t] = EV [e‘ Ji rudu

df; = B(¢ — 6;) dt + ndW/,

7

Equation (3)
dXt — ,U,(t, Xt) dt -+ O'(t, Xt) dBt
X = (r¢,04)
g = {a(— :1:)] Feynman-Kac Theorem
HAL,
B (¢ y) Equation (4)
g 2:| Pt(T) = EQ [8_ ftT S Ft“ — ’U,(t, T't, Ht)a

Engineering

Methods: Bond Pricing (Stochastic Interest Rates)

P(T) = E® [6_ Ji 7 du ftw = u(t, r¢, 0t)

/ T

PDE SDE
i O*u At (T)—By(T)re—Cy(T)0
{gjm(y—x)ww D2 Lafs Lo P(T) = AT BiDIn—CuT)o
u(T,z,y) = 1.

A(T), B,(T), C,(T) are known functions

After Investigation of Bond Pricing: Euler Mall‘\:{?wrréaPDitshcrsetiza':ion
- Pricing Bond Options ath Sampling

- Pricing Swaptions

Neural Network Model

& | UNIVERSITY OF

¥ TORONTO ENgineering

Conclusion and Next Steps

e Comparing MLMC and MC
* Exploring MLMC Hyperparameters
 Bond Options (Stochastic Interest Rates)

Conclusion

Key Results

- MLMC demonstrates significant time complexity improvement over MC with an
improvement of 5.1-7.2x less time steps and 1.4-1.6x less overall training time

- Number of required time steps increases as Relative Error decreases and H-Factor
increases

- MLMC and DNN’s performance with Stochastic Interest Rate can be investigated through
applying Feynman-Kac to Zero Coupon Bonds

Next Steps

- Explore MLMC and DNN’s with complex Stochastic Interest Rates PDEs at high dimensions
for Zero Coupon Bonds, Bond Options, and Swaptions

- Explore the optimization of MLMC hyperparameters for minimizing number of time steps
required

(] UNIVERSITY OF

% TORONTO ENgineering

Thank you.

ericchang.li@mail.utoronto.ca

