
Eric Li
Engineering Science (Machine Intelligence)

 University of Toronto

April 2022

Application of Multi Layer Monte Carlo in Solving Partial
Differential Equations for Bond Options Pricing

Table of Contents
• Motivation

– Curse of Dimensionality, Time Efficiency, and PDE Simplicity

• Background
– FBSNN for High Dimensional PDEs

– Multilayer Monte Carlo Path Simulation

• Methods and Results
– Comparing MLMC to MC methods

– MLMC Hyperparameter tuning

– Performance Benchmarking (can remove this)

• Conclusion

– Key Findings

– Next Steps

• Motivation

• Curse of Dimensionality

Introduction

Motivation: Curse of Dimensionality (CoD)

Partial Differential Equations (PDEs): Black Scholes Barenblatt (BSB)

Curse of Dimensionality: More data
required due to greater sparsity at
larger dimensions

DeepAI, Data Sparsity for Data Points. .

Motivation: Time Efficiency and PDE Simplicity
Deep Neural Network: Solution for BSB CoD

Limitation: Model Simplicity
Fixed Interest Rate

Limitation: Time Inefficiency
from Monte Carlo Sampling

Weinan E, Jiequn Han, and Arnulf Jentzen. “Deep Learning-Based
Numerical Methods for High-Dimensional Parabolic Partial Differential
Equations and Backward Stochastic Differential Equations”. In:
Communications in Mathematics and Statistics 5.4 (Nov. 2017), pp.
349–380. issn: 2194-671X.doi:10.1007/s40304- 017- 0117- 6 .url:
http://dx.doi.org/10.1007/s40304-017-0117-6

Goal:
1) Increase Path Simulation Time

Efficiency
2) Extend PDE Complexity for more

realistic real world application

Background

• Forward Backward Stochastic Neural Networks (FBSNN) for High Dimensional PDEs

• Multilayer Monte Carlo (MLMC) Path Simulation

Unknown solution:

Terminal Condition:

FBSNN: Initial Formulations Initial Coupled Forward Backward Stochastic Differential
Equations (FBSDE) of general form:

Solutions consist of stochastic processes X
T
 , Y

T
 , Z

T

Quasi-linear PDEs

Ito’s Formula

Physics Informed Deep Learning Automatic Differentiation

Approximate with a DNN

Maziar Raissi. Forward-Backward Stochastic Neural
Networks: Deep Learning of High-dimensional
Partial Differential Equations. 2018.
arXiv:1804.07010 [stat.ML] .

1. Discretize FBSDE with Euler-Maruyama scheme

FBSNN: Modelling with DNN
Goal: Approximate u(x,t) with DNN

2. Define Loss Function

N = Number of Timesteps M = Number of Path Simulations

FBSNN: Financial Applications
FBSD

Black Scholes Barenblatt (BSB) PDE
Equation

Known Explicit Solution

• X
t
 : Underlying Stock price at time t

• Y
t
 : Overlying derivative price at time t

• σ : Scalar Volatility
• r : Scalar Interest Rate
• Monte Carlo Path Sampling for data generation

FBSNN: Advancements and Limitations

Advancements
• Model parameters do not increase by number of timesteps (N)
• Converges to the exact value Y

0
 = u(0,X

0
) in first few hundred iterations

• After 500 iterations, relative error of 2.3 x 10-3 is obtained

Limitations
• Monte Carlo sampling is costly
• More time steps required to more accurately estimate Y

t
 = u(t,X

t
) for t > 0

• Only basic PDEs modelled; BSB equations for calls and puts are more complex
• Only quasi-linear parabolic PDEs can be modelled and solved

MLMC: An Extension of Previous MC Method
- Previous MC method repeatedly iterates over a constant amount of points in

time interval [0,T]
- MLMC introduces layers of different time steps covering different iterations

0 < t < T 0 < l < L h
l
 = M-lT

M = 2, T = 1
l = 1

h
l
 = 0.5

t
1
 = 0.5

l = 2

h
l
 = 0.25

t
1
 = 0.25

t
2
 = 0.5

t
3
 = 0.75

l = 3

h
l
 = 0.125

…

N
1

N
2

N
3

Convergence Condition

Iterations at each level

T: Terminal Time
L: Terminal Layer
h

l
: time step size at layer l

M: number of time step increase per
layer
ε: relative error

MLMC: Initial Paper Results
Theory

• To achieve an accuracy of O(ε) in sampling , the computation cost is reduced from O(ε-3) of MC to
O(ε-2(logε)2) of MLMC

Application on Option Pricing
• Time decrease of a factor in the range of 30-65 in comparison with MC or 4-10 in comparison to MC

+ performance boosting methods (ie: Richardson extrapolation)

Limitations
• Lack of complex finance applications (ie: high dimensionality) during testing
• Lack of significant improvement when combined with Richardson Extrapolation; other performance

boosting methods (ie: Quasi Monte Carlo, Milstein Discretization) must be explored
• Unknown benefits when used for neural network data generation
• Potential problems arising due to bias from Monte Carlo path simulation is still present

Methods and Results

• Comparing MLMC and MC

• Exploring MLMC Hyperparameters

• Bond Options (Stochastic Interest Rates)

Methods: Comparing MLMC and MC (Training)

256 256 256 256

4 Hidden LayersInput Layer Output Layer

D+1 1

ReLu ReLu ReLu

For Each Timestep t

Yt

D

1tt

Xt

Automatic
Differentiation

Zt

tt, Xt

Wt-1,Yt-1, Zt-1

Performed across all M batches over N timesteps for each training iteration

Loss Function

Losst

dXt

tt-1

Xt-1

dtt

Wt-1
Yt-1
Zt-1

Methods: Comparing MLMC and MC (Validation)

50 Timesteps

t

X

D

M

Neural
Network

Explicit Solution

Yactual

Ypredicted
M

50 Timesteps

ε

Relative Error = ε = |Yactual- Ypredicted| / Yactual

For Each Iteration Until ε=User Specified Error

Underlying
Asset Price

Overlying
Option Price

Results: Comparing MLMC and MC

Figure 1
Best MC model requires 5.1-7.2x more timesteps than
best MLMC model

Figure 2
Best MC model requires 1.4-1.6x more time than the
best MLMC model

Results: MLMC at Different Hyperparameters

Figure 3
Nl = 200
Time steps increase as Relative Error decreases and H
Factor increases

Figure 4
Relative Error = 0.02
Time steps increase as H Factor increases, but seem
independent of Nl

Methods: Bond Pricing (Stochastic Interest Rates)

Feynman-Kac Theorem

Equation (1) Equation (2)

Equation (3)

Equation (4)

Methods: Bond Pricing (Stochastic Interest Rates)

At(T), Bt(T), Ct(T) are known functions

PDE SDE

Neural Network Model

Euler Maruyama Discretization
MLMC Path Sampling

After Investigation of Bond Pricing:
- Pricing Bond Options
- Pricing Swaptions

Conclusion and Next Steps

• Comparing MLMC and MC

• Exploring MLMC Hyperparameters

• Bond Options (Stochastic Interest Rates)

Conclusion
Key Results

- MLMC demonstrates significant time complexity improvement over MC with an
improvement of 5.1-7.2x less time steps and 1.4-1.6x less overall training time

- Number of required time steps increases as Relative Error decreases and H-Factor
increases

- MLMC and DNN’s performance with Stochastic Interest Rate can be investigated through
applying Feynman-Kac to Zero Coupon Bonds

Next Steps

- Explore MLMC and DNN’s with complex Stochastic Interest Rates PDEs at high dimensions
for Zero Coupon Bonds, Bond Options, and Swaptions

- Explore the optimization of MLMC hyperparameters for minimizing number of time steps
required

Thank you.

ericchang.li@mail.utoronto.ca

