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• Motivation

• Curse of Dimensionality

Introduction



Motivation: Curse of Dimensionality (CoD)

Partial Differential Equations (PDEs): Black Scholes Barenblatt (BSB)

Curse of Dimensionality: More data 
required due to greater sparsity at 
larger dimensions

DeepAI, Data Sparsity for Data Points. . 



Motivation: Time Efficiency and PDE Simplicity
Deep Neural Network: Solution for BSB CoD

Limitation: Model Simplicity
Fixed Interest Rate

Limitation: Time Inefficiency 
from Monte Carlo Sampling

Weinan E, Jiequn Han, and Arnulf Jentzen. “Deep Learning-Based 
Numerical Methods for High-Dimensional Parabolic Partial Differential 
Equations and Backward Stochastic Differential Equations”. In:
Communications in Mathematics and Statistics 5.4 (Nov. 2017), pp. 
349–380. issn: 2194-671X.doi:10.1007/s40304- 017- 0117- 6 .url: 
http://dx.doi.org/10.1007/s40304-017-0117-6

Goal: 
1) Increase Path Simulation Time 

Efficiency
2) Extend PDE Complexity for more 

realistic real world application



Background

• Forward Backward Stochastic Neural Networks (FBSNN) for High Dimensional PDEs

• Multilayer Monte Carlo (MLMC) Path Simulation



Unknown solution:

Terminal Condition:

FBSNN: Initial Formulations Initial Coupled Forward Backward Stochastic Differential 
Equations (FBSDE) of general form:

Solutions consist of stochastic processes X
T
 , Y

T
 , Z

T

Quasi-linear PDEs

Ito’s Formula

Physics Informed Deep Learning Automatic Differentiation

Approximate with a DNN

Maziar Raissi. Forward-Backward Stochastic Neural 
Networks: Deep Learning of High-dimensional 
Partial Differential Equations. 2018. 
arXiv:1804.07010 [stat.ML] .



1. Discretize FBSDE with Euler-Maruyama scheme

FBSNN: Modelling with DNN
Goal: Approximate u(x,t) with DNN

2. Define Loss Function

N = Number of Timesteps M = Number of Path Simulations



FBSNN: Financial Applications
FBSD

Black Scholes Barenblatt (BSB) PDE 
Equation

Known Explicit Solution

• X
t
 : Underlying Stock price at time t

• Y
t
 : Overlying derivative price at time t

• σ : Scalar Volatility
• r :  Scalar Interest Rate
• Monte Carlo Path Sampling for data generation



FBSNN: Advancements and Limitations

Advancements
• Model parameters do not increase by number of timesteps (N)
• Converges to the exact value Y

0
 = u(0,X

0
) in first few hundred iterations

• After 500 iterations, relative error of 2.3 x 10-3 is obtained

Limitations
• Monte Carlo sampling is costly
• More time steps required to more accurately estimate Y

t
 = u(t,X

t
) for t > 0

• Only basic PDEs modelled; BSB equations for calls and puts are more complex
• Only quasi-linear parabolic PDEs can be modelled and solved



MLMC: An Extension of Previous MC Method
- Previous MC method repeatedly iterates over a constant amount of points in 

time interval [0,T]
- MLMC introduces layers of different time steps covering different iterations

0 < t < T 0 < l < L h
l
 = M-lT
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Convergence Condition 

Iterations at each level

T: Terminal Time
L: Terminal Layer
h

l
: time step size at layer l

M: number of time step increase per 
layer
ε: relative error



MLMC: Initial Paper Results
Theory

• To achieve an accuracy of O(ε) in sampling , the computation cost is reduced from O(ε-3) of MC to 
O(ε-2(logε)2) of MLMC

Application on Option Pricing
• Time decrease of a factor in the range of 30-65 in comparison with MC or 4-10 in comparison to MC 

+ performance boosting methods (ie: Richardson extrapolation)

Limitations
• Lack of complex finance applications (ie: high dimensionality) during testing
• Lack of significant improvement when combined with Richardson Extrapolation; other performance 

boosting methods (ie: Quasi Monte Carlo, Milstein Discretization) must be explored
• Unknown benefits when used for neural network data generation
• Potential problems arising due to bias from Monte Carlo path simulation is still present



Methods and Results

• Comparing MLMC and MC

• Exploring MLMC Hyperparameters

• Bond Options (Stochastic Interest Rates)



Methods: Comparing MLMC and MC (Training)
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Methods: Comparing MLMC and MC (Validation)
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Results: Comparing MLMC and MC

Figure 1
Best MC model requires 5.1-7.2x more timesteps than 
best MLMC model

Figure 2
Best MC model requires 1.4-1.6x more time than the 
best MLMC model



Results: MLMC at Different Hyperparameters

Figure 3
Nl = 200
Time steps increase as Relative Error decreases and H 
Factor increases

Figure 4
Relative Error = 0.02
Time steps increase as H Factor increases, but seem 
independent of Nl



Methods: Bond Pricing (Stochastic Interest Rates)

Feynman-Kac Theorem

Equation (1) Equation (2)

Equation (3)

Equation (4)



Methods: Bond Pricing (Stochastic Interest Rates)

At(T), Bt(T), Ct(T) are known functions

PDE SDE

Neural Network Model

Euler Maruyama Discretization
MLMC Path Sampling

After Investigation of Bond Pricing:
- Pricing Bond Options
- Pricing Swaptions



Conclusion and Next Steps

• Comparing MLMC and MC

• Exploring MLMC Hyperparameters

• Bond Options (Stochastic Interest Rates)



Conclusion
Key Results

- MLMC demonstrates significant time complexity improvement over MC with an 
improvement of 5.1-7.2x less time steps and 1.4-1.6x less overall training time

- Number of required time steps increases as Relative Error decreases and H-Factor 
increases

- MLMC and DNN’s performance with Stochastic Interest Rate can be investigated through 
applying Feynman-Kac to Zero Coupon Bonds

Next Steps

- Explore MLMC and DNN’s with complex Stochastic Interest Rates PDEs at high dimensions 
for Zero Coupon Bonds, Bond Options, and Swaptions

- Explore the optimization of MLMC hyperparameters for minimizing number of time steps 
required
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ericchang.li@mail.utoronto.ca


