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Introduction

* Motivation
e Curse of Dimensionality



Motivation: Curse of Dimensionality (CoD)

Partial Differential Equations (PDESs): Black Scholes Barenblatt (BSB)
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Motivation: Time Efficiency and PDE Simplicity

Deep Neural Network: Solution for BSB CoD
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Limitation: Time Inefficiency
from Monte Carlo Sampling
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Background

* Forward Backward Stochastic Neural Networks (FBSNN) for High Dimensional PDEs
* Multilayer Monte Carlo (MLMC) Path Simulation



F BS N N : I n itia I FO rm u Iatio n S Initial Coupled Forward Backward Stochastic Differential

Equations (FBSDE) of general form:
dXt = ,U/(t,Xt,}/t,Zt)dt—i—U(t,Xt,n)th, te [O,T],

Quasi-linear PDEs
9 XO — 57
u = f(t,z,u, Du, D*u) dY, = o(t, X4, Yy, Zo)dt + Zlo(t, Xy, Y)dW,, t€[0,T),
YT — g(XT)a

Unknown solution: u(t, )

Terminal Condition: u(T, z) = g(z) Solutions consist of stochastic processes X, Y, Z_

[to’s Formula

Y; = u(t, X;), and Z; = Du(t, Xy).

Physics Informed Deep Learning Automatic Differentiation

J

Approximate with a DNN  u(t, z)

% Maziar Raissi. Forward-Backward Stochastic Neural
Networks: Deep Learning of High-dimensional
Partial Differential Equations. 2018.

 TORONTO Englnee"ng arXiv:1804.07010 [stat.ML] .




FBSNN: Modelling with DNN

Goal: Approximate u(x,t) with DNN

1. Discretize FBSDE with Euler-Maruyama scheme
X"l X+ u(t™, X™, Y™, ZVAL + o (1", X™, Y AW™,
Yn-}-l ~Y™"n 4+ QO(tn, X'n,, Y'n,’ Zn)Atn + (Zn),O'(tn, X'n,, Yn)AWn,

2. Define Loss Function

M N-1
n+1 n n n n n |2 N
d Y |yt -y - on At — (20, EAW|+§:|Y Y2
m=1 n=0
N = Number of Timesteps M = Number of Path Simulations
2 aversiny or .
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100-dimensional Black-Scholes-Barenblatt

FBSNN: Financial Applications -
FBSD N
dX, = odiag(X,)dW,, te[0,T], 7
XO = 5’ i 70 D
dY; = 7"(Yt — Z;X)dt + qZ{diag(Xt)th, t € [07 T)7 |~ Toarnea utz, )
Yr=9(Xr), g(z) = ||z|* 0] e Trourin
W Yo =u(0,Xo)
Black Scholes Barenblatt (BSB) PDE 0 02 o i i o0
1 _ t
Uy = _irI‘r[Uzdla’g(th )D 2’1,1,] a3 T'(’LL - (D u)’x) 100-dimensional Black-Scholes-Barenblatt
Known Explicit Solution 0007 1
u(t,z) = exp ((r + o*)(T —t)) g(z) ZZ:G
* X :Underlying Stock price at time t :Zz; /
* Y, :Overlying derivative price at time t - '
* 0:Scalar Volatility =N,
* r: Scalar Interest Rate R 02 04 06 0 o

t

* Monte Carlo Path Sampling for data generation
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FBSNN: Advancements and Limitations

Advancements

* Model parameters do not increase by number of timesteps (N)
* Converges to the exact value Y, = u(0,X ) in first few hundred iterations
« After 500 iterations, relative error of 2.3 x 103 is obtained

Limitations

* Monte Carlo sampling is costly
* More time steps required to more accurately estimate Y, = u(t,X ) for t >0

Only basic PDEs modelled; BSB equations for calls and puts are more complex
Only quasi-linear parabolic PDEs can be modelled and solved
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MLMC: An Extension of Previous MC Method

- Previous MC method repeatedly iterates over a constant amount of points in

time interval [0, T]

- MLMC introduces layers of different time steps covering different iterations

0<t<T 0O<lI<lL h=m'T T: Terminal Time
L: Terminal Layer
M=2T=1 t, =05 h: time step size at layer |
I=1 | | N M: number of time step increase per
hl=0'5 1 |ayer
t =0.25 t =0.75 €: relative error
[=2 1 3
| | | | N,
h =0.25 05
Iterations at each level 2
i
N, = {25‘2 \/ Vi (Z\/Vl/hl)} I=3 | | | | | | | | N,
=0 h=0.125

Convergence Condition Y, - MY | <2 (M*-1)e
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MLMC: Initial Paper Results

Theory

 To achieve an accuracy of O(€) in sampling , the computation cost is reduced from O(£3) of MC to
O(£?(log€)?) of MLMC

Application on Option Pricing

* Time decrease of a factor in the range of 30-65 in comparison with MC or 4-10 in comparison to MC
+ performance boosting methods (ie: Richardson extrapolation)

Limitations

* Lack of complex finance applications (ie: high dimensionality) during testing

* Lack of significant improvement when combined with Richardson Extrapolation; other performance
boosting methods (ie: Quasi Monte Carlo, Milstein Discretization) must be explored

* Unknown benefits when used for neural network data generation

* Potential problems arising due to bias from Monte Carlo path simulation is still present
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Methods and Results

* Comparing MLMC and MC
* Exploring MLMC Hyperparameters
* Bond Options (Stochastic Interest Rates)



Methods: Comparing MLMC and MC (Training)

Performed across all M batches over N timesteps for each training iteration

For Each Timestep t Input Layer 4 Hidden Layers Output Layer
dt ) ) ) ) ) )
t

t - t, 1

—

)

Automatic
Differentiation
dX. —— | D+1 |——| 256 ——| 256 256 256 —»@ Y, Z,

X 1 - X, D

— — — — — — |

Relu Relu Relu
Wt-1 tt’ Xt
Y, Vo — Yoy — Ot — (R YTOAWR* Loss,
W Y. ., Z

t-1 t-17 " t-17 Tt-1 _
Loss Function
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Methods: Comparing MLMC and MC (Validation)

For Each Iteration Until e=User Specified Error Overlying
Underlying Option Price
A Pri
sset Price 50 Timesteps
4 )
t
Neural M
Network Ypredicted \
- /
€
M
X
Explicit Solution /
u(t, @) = exp ((r + 0*)(T — 1)) g(=) Ve
_ D
50 Timesteps

Relative Error = € = |Yactual_ Ypredicted| / Yactual
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Results: Comparing MLMC and MC

Total Number of Timesteps Required to Achieve Relative Errors Total Run Time Required to Achieve Relative Errors
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Figure 1 Figure 2
Best MC model requires 5.1-7.2x more timesteps than Best MC model requires 1.4-1.6x more time than the
best MLMC model best MLMC model
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H Factor

°
Results: MLMC at Different Hyperparameters
: Y
Log Timesteps for Varying H-Factor MLMC Models to Reach Relative Errors Normalized Timesteps for MLMC Model to Reach Relative Error 0.02
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Figure 3 Figure 4
N, =200 Relative Error = 0.02
Time steps increase as Relative Error decreases and H Time steps increase as H Factor increases, but seem
Factor increases independent of NI
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Methods: Bond Pricing (Stochastic Interest Rates)

Equation (1) Equation (2)
{ dri = a(f; —ry)dt + o thl, P(T) = EQ [e‘ Ji T d“PT(T)'}'t] = EV [e‘ Ji rudu

df; = B(¢ — 6;) dt + ndW/,

7

Equation (3)
dXt — ,U,(t, Xt) dt -+ O'(t, Xt) dBt
X = (r¢,04)
g = {a( — :1:)] Feynman-Kac Theorem
HAL,
B (¢ y) Equation (4)
g 2:| Pt(T) = EQ [8_ ftT S Ft“ — ’U,(t, T't, Ht)a
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Methods: Bond Pricing (Stochastic Interest Rates)

P(T) = E® [6_ Ji 7 du ftw = u(t, r¢, 0t)

/ T

PDE SDE
i O*u At (T)—By(T)re—Cy(T)0
{gjm(y—x)ww D2 Lafs Lo P(T) = AT BiDIn—CuT)o
u(T,z,y) = 1.

A(T), B,(T), C,(T) are known functions

After Investigation of Bond Pricing: Euler Mall‘\:{?wrréaPDitshcrsetiza':ion
- Pricing Bond Options ath Sampling

- Pricing Swaptions

Neural Network Model
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Conclusion and Next Steps

e Comparing MLMC and MC
* Exploring MLMC Hyperparameters
 Bond Options (Stochastic Interest Rates)



Conclusion

Key Results

-  MLMC demonstrates significant time complexity improvement over MC with an
improvement of 5.1-7.2x less time steps and 1.4-1.6x less overall training time

- Number of required time steps increases as Relative Error decreases and H-Factor
increases

- MLMC and DNN’s performance with Stochastic Interest Rate can be investigated through
applying Feynman-Kac to Zero Coupon Bonds

Next Steps

- Explore MLMC and DNN’s with complex Stochastic Interest Rates PDEs at high dimensions
for Zero Coupon Bonds, Bond Options, and Swaptions

- Explore the optimization of MLMC hyperparameters for minimizing number of time steps
required
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Thank you.
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